Toán khó vừa khó vừa nóng

U

ugly_crazy

$\dfrac{1}{1.2} + \dfrac{1}{3.4} + \dfrac{1}{5.6} + ... + \dfrac{1}{49.50}$
$= 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - \dfrac{1}{6} + ... + \dfrac{1}{49} - \dfrac{1}{50}$
$= (1 + \dfrac{1}{3} + \dfrac{1}{5} + ... + \dfrac{1}{49}) - (\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{6} + \dfrac{1}{50})$
$= (1 + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} +\dfrac{1}{5} + ... + \dfrac{1}{49} + \dfrac{1}{50})- 2(\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{6} + \dfrac{1}{50})$
$= (1 + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} +\dfrac{1}{5} + ... + \dfrac{1}{49} + \dfrac{1}{50}) - (1 + \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} +\dfrac{1}{5} + ... + \dfrac{1}{25})$
$=\dfrac{1}{26} + \dfrac{1}{27} + \dfrac{1}{28} +\dfrac{1}{29} + ... + \dfrac{1}{50}$
 
Top Bottom