Toán khó lớp 7

T

tranlinh98

Có:
$\dfrac{a+2002}{a-2002}= \dfrac{b+2001}{b-2001}$ ($a\ne 2002$, $b\ne0,b\ne\pm 2001$)

\Rightarrow $(a+2002)(b-2001) = (a-2002)(b+2001)$

\Leftrightarrow $ab-2001a+2002b-2001.2002 = ab+2001a-2002b-2001.2002$

\Leftrightarrow $4004b = 4002a$

\Leftrightarrow $2002b = 2001a$

\Leftrightarrow $\dfrac{a}{2002} = \dfrac{b}{2001}$ (đfcm)
 
H

huy14112



$\dfrac{a+2002}{a-2002}=\dfrac{b+2001}{b-2001}$

$\longrightarrow \dfrac{a+2002}{a-2002}+1=\dfrac{b+2001}{b-2001}+1$

$\dfrac{a+2002+a-2002}{a-2002}=\dfrac{b+2001+b-2001}{b-2001}$

$\dfrac{2a}{a-2002}=\dfrac{2b}{b-2001}$

$\longrightarrow 2a(b-2001)=2b(a-2002)$

$ 2ab -4002a =2ab-4004b$

$2ab-2ab+4004b=4002a$

$4004b=4002a$
$\longrightarrow \dfrac{b}{4002}=\dfrac{a}{4004}$

hay

$ \dfrac{b}{2001}=\dfrac{a}{2002} \longrightarrow dpcm$
 
T

tayhd20022001


Đề bài :Chứng minh rằng nếu $\dfrac{a+2002}{a-2002}$=$\dfrac{b+2001}{b-2001}$ với a khác 2002; b khác 0; b khác 2001 và -2001 thì $\dfrac{a}{2002}$=$\dfrac{b}{2001}$
$$Giải$$
Ta có "
$\dfrac{a+2002}{a-2002}$=$\dfrac{b+2001}{b-2001}$

\Rightarrow $\dfrac{a+2002}{a-2002}$+1=$\dfrac{b+2001}{b-2001}$+1

\Rightarrow $\dfrac{(a+2002)+(a-2001)}{a-2002}$=$\dfrac{(b+2001)+(b-2001)}{b-2001}$

\Rightarrow $\dfrac{a+2002+a-2001}{a-2002}$=$\dfrac{b+2001+b-2001}{b-2001}$

\Rightarrow $\dfrac{2a}{a-2002}$=$\dfrac{2b}{b-2001}$

\Rightarrow 2a(b-2001)=2b(a-2002)
\Rightarrow 2ab-4002a=2ab-4004b
\Rightarrow 2ab-2ab+4004b=4002a
4004b=4002a
\Rightarrow $\dfrac{a}{4004}$=$\dfrac{b}{4002}$
 
Top Bottom