Toán khó đây

H

hiensau99

Ta có: $ \frac{x}{y+z+1}= \frac{y}{x+z+1}= \frac{z}{x+y-2}= x+y+z = \frac{x+y+z}{2(x+y+z)+1+1-2}= \frac{1}{2}$

*$\frac{x}{y+z+1}= \frac{1}{2} \Longrightarrow 2x=y+z+1 \Longrightarrow 3x=x+y+z+1 \Longrightarrow 3x= 1 \frac{1}{2} \Longrightarrow x= \frac{1}{2}$

*$\frac{y}{x+z+1}= \frac{1}{2} \Longrightarrow 2y=x+z+1 \Longrightarrow 3y=x+y+z+1 \Longrightarrow 3y= 1 \frac{1}{2} \Longrightarrow y= \frac{1}{2}$

*$\frac{z}{x+y-2}= \frac{1}{2} \Longrightarrow 2z=x+y-2 \Longrightarrow 3z=x+y+z-2 \Longrightarrow 3z= -1 \frac{1}{2} \Longrightarrow z= \frac{-1}{2}$

Vậy $x=y= \frac{1}{2}; \ z= \frac{-1}{2}$
 
Top Bottom