Toán HSG

1

1um1nhemtho1

zzzzzz

1)Cho x,>1
CMR:[TEX]\frac{(x^3+y^3)-(x^2+y^2)}{(x-1)(y-1)}\geq8[/TEX]

$\frac{(x^3+y^3)-(x^2+y^2)}{(x-1)(y-1)} = \frac{x^2}{y-1} + \frac{y^2}{x-1}$
đặt$ x-1 =a; y-1=b (a,b >0)$
bài toán trở về
$\frac{(a+1)^2}{b}+\frac{(b+1)^2}{a} \ge 8$
\Leftrightarrow [TEX]\frac{a^2}{b}+\frac{b^2}{a} + 2(\frac{a}{b}+\frac{b}{a})+\frac{1}{a}+\frac{1}{b} \ge 8[/TEX]
\Rightarrow....
 
V

vansang02121998

$\dfrac{x^2}{y-1}+4(y-1) \ge 4x$

$\dfrac{y^2}{x-1}+4(x-1) \ge 4y$

$\rightarrow \dfrac{x^2}{y-1}+\dfrac{y^2}{x-1} \ge 4x+4y-4(y-1+x-1)=8$
 
Top Bottom