Toán hình SuPeR KHÓ đây !!!!

M

minhuyk6vd

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Câu 1 : Cho hình vuông ABCD có AB = a cố định. M là một điểm di động trên đường chéo AC. Kẻ ME vuông góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.

Câu 2 : Cho tứ giác ABCD. Qua trung điểm K của đường chéo BD dựng đương thẳng song song với AC, đương thẳng này cắt AD tại E. Chứng minh CE chia tứ giác ABCD thành 2 phần có diện tích bằng nhau.

THANK YOU !!! ;);):D:D:):)
 
B

buithinhvan77

Câu 1 : Cho hình vuông ABCD có AB = a cố định. M là một điểm di động trên đường chéo AC. Kẻ ME vuông góc với AB và MF vuông góc với BC. Xác định vị trí của M trên AC sao cho diện tích tam giác DEF nhỏ nhất. Tìm giá trị nhỏ nhất đó.


THANK YOU !!! ;);):D:D:):)[/SIZE]

Kẻ ME⊥AB; MK⊥CD; MN⊥AD; MF⊥BC
Dễ có △DKM = △EMF (g.c.g)
=> EF = DM
^DMK = ^EFM mà MK⊥FM nên DM⊥EF tại H
2S[DEF] = DH.EF = EF(EF + MH) = EF^2 + EF.MH = EF^2 + MF.ME
=> 2S[DEF] = x^2 + (a - x)^2 + x(a - x) = x^2 - ax + a^2 = (x - a/2)^2 + 3a^2/4)≥ 3a^2/4
=> S[DEF] ≥ 3a^2/8 <=> x = a/2 <=> E là trung điểm AB <=> M là trung điểm AC
 
Last edited by a moderator:
M

minhuyk6vd

câu 1 thì mình đã giải ra dc rùi còn câu 2 bạn bik giải giải nốt lun nhé thanks
 
Top Bottom