- Kẻ AN // MD//CK ( $N\in BC; \ K \in AB$)
- CM: $\dfrac{BD}{DC}= \dfrac{BA}{AC}$
- CM: $\dfrac{BM}{AM}= \dfrac{BC}{AC}$. CM: $\dfrac{BM}{AM}= \dfrac{BD}{DN} \to \dfrac{BD}{DN} = \dfrac{BC}{AC}$
Do $AB > BC \to \dfrac{BA}{AC}> \dfrac{BC}{AC} \to \dfrac{BD}{DC} > \dfrac{BD}{DN} \to DC<DN $
$\to $ Điểm C nằm giữa 2 điểm D và M $\to \hat{A_1}< \widehat{DAN}$. Mà $ \hat{A_1}= \hat{A_2}; \widehat{DAN}=\widehat{D_1} \to \hat{A_2}< \widehat{D_1} \to DM<AM$ (1)
- CM: $\dfrac{BD}{DC}= \dfrac{BM}{MK} \to \dfrac{BM}{MK}=\dfrac{BA}{AC}$
Do $\dfrac{BA}{AC}> \dfrac{BC}{AC} \to \dfrac{BM}{MK}>\dfrac{BM}{AM} \to MK<AM $
$\to $ Điểm K nằm giữa 2 điểm A và M $\to \widehat{C_1}< \widehat{MCA}$. Mà $\widehat{C_1}=\widehat{M_1}; \widehat{MCA}=\widehat{C_2} \to \widehat{M_1}< \widehat{C_2} < \to DC<MD$ (2)
- Từ (1) và (2) $\to AM>DM>DC$