F
firering
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Mọi người giúp mình mấy câu màu xanh nha, đang cần gấp
Bài 154:
Cho đường tròn (O) có đường kính AB =2R. Gọi M là điểm bất kì thuộc (O) (MA <MB). Qua B vẽ đường thẳng (d) vuông góc với AB, tiép tuyến tại M cắt (d) tại N và AB tại K. AM cắt (d) tại E. OM cắt (d) tại H, gọi F là điểm đối xứng của E qua B.
a. Cm: tứ giác OAMN là hình thang.
b. Gọi C là giao điểm của AM và HK. Cm: OC^2=OH.R
c. Cm: 4 điểm A, H, F, K cùng thuộc một đường tròn. Giả sử tứ giác OCMN là hình bình hành. Tính OH theo R
Bài 155:
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=ME.MF
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và J. Cm J là trung điểm của đoạn NS
Bài 154:
Cho đường tròn (O) có đường kính AB =2R. Gọi M là điểm bất kì thuộc (O) (MA <MB). Qua B vẽ đường thẳng (d) vuông góc với AB, tiép tuyến tại M cắt (d) tại N và AB tại K. AM cắt (d) tại E. OM cắt (d) tại H, gọi F là điểm đối xứng của E qua B.
a. Cm: tứ giác OAMN là hình thang.
b. Gọi C là giao điểm của AM và HK. Cm: OC^2=OH.R
c. Cm: 4 điểm A, H, F, K cùng thuộc một đường tròn. Giả sử tứ giác OCMN là hình bình hành. Tính OH theo R
Bài 155:
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=ME.MF
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và J. Cm J là trung điểm của đoạn NS