toán hình học 8 khó

E

etete

a/
gọi M = giao điểm của CE và DF
xét tg EBC và tg FCD có:
AB= BC <> AB/2 = BC/2 <> EB = FC ( E,F lần lượt là trung điểm của AB,BC )
^EBC = ^FCD = 90* ( ABCD là hình vuông)
BC= DC ( ABCD là hình vuông )
=> tg EBC = tg FCD
=> ^ECB = ^FDC
mà ^FDC + ^DFC = 90* ( do tg DFC vuông tại C)
<> ^ECB + ^DFC = 90*
=> tg KMC vuông tại M
hay DF vuông góc EC
* Kẻ AH // EC ( H la trung diem CD )
EC vuong DF tai M ( tu cau a )
=> AH vuong DF tai K
* xet 2 tg vuong CMD va HKD co
^CMD = ^HKD = 90¤
^DHK = ^DCM ( 2 goc dong vi)
=> tgCMD ~ tg HKD
HD/CD = KD/MD = 1/2
=> KD = KM
* xet 2 tg vuong AKD va AKM co
AK chung
goc AKD = goc AKM = 90¤
KM = KD
=> tg AKM = tg AKD
=> AD = AM
 
Top Bottom