toan hinh 8

N

nuthanbongdem99x

D

depvazoi


untitlNJGed.bmp

*$DF=\dfrac{1}{2}AC; DF//AC$ (DF là đtb $\Delta AHC$)
$MD=\dfrac{1}{2}BH; MD//BH$ (MD là đtb $\Delta ABH$)
$NF=\dfrac{1}{2}BH; MF//BH$ (MF là đtb $\Delta BHC$)
$=> MD=NF; MD//NF$
$=> MDFN$ là hbh.
Ta có:
$\widehat{MDH}=\widehat{H_1} (slt)$
$\widehat{HDF}=\widehat{HAC} (đv)$
Mà $\widehat{H_1}+\widehat{HAC}=90^o$
$=> \widehat{MDH}+\widehat{HDF}=90^o$
$=> MDFN$ là hcn.
T/tự, ta có: MEFP là hcn.

*Để MD=ME=DP thì:
$\dfrac{1}{2}BH=\dfrac{1}{2}AH=\dfrac{1}{2}HC$
$<=> BH=AH=HC$
$<=> \Delta ABC$ đều.

 
Last edited by a moderator:
Top Bottom