[toán]giải phương trình lượng giác

D

doremon.

[tex]2sin(3x+\frac{\pi}{4})=\sqrt{1+8sin2xcos^22x[/tex]
[TEX]\left{\begin{sin(3x+\frac{\pi}{4})\geq 0}\\{1+8sin2x.cos^22x=4sin^2(3x+\frac{\pi}{4})} [/TEX]
[tex]1+8sin2x.cos^22x=4sin^2(3x+\frac{\pi}{4})[/tex]
ta có
[tex]4sin^2(3x+\frac{\pi}{4})=1+8sin2xcos^22x[/tex]
>>[tex]2[1-cos(6x+\frac{\pi}{2})]=1+4sin2x(1+cos4x)[/tex]
>>[tex]1+4sin2x+2(sin6x-sin2x)=2(1+sin6x)[/tex]
>>[tex]sin2x=\frac{1}{2}[/tex]
kết hợp với điều kiện [tex]sin(3x+\frac{\pi}{4})\geq 0 [/tex]
ta có [TEX]\left[\begin{sin(\frac{\pi}{12}+3k\pi)=cosk\pi\geq0}\\{sin(\frac{3\pi}{2}+k3\pi)=cos(\pi+k\pi)\geq 0} [/TEX]
>>[tex]\left[\begin{k=2l}\\{k=2l+1} [/TEX]
vậy
[tex]\left[\begin{x=\frac{\pi}{12}+l2 \pi}\\{x=\frac{5\pi}{12}+(2l+1)\pi} [/TEX]với l[tex]\in Z[/tex]
 
Last edited by a moderator:
D

doremon.

[tex] sin(2x+\frac{5\pi}{2}-3cos(x-\frac{\pi}{7})=1+2sinx[/tex]
[tex]sin(2x+\frac{\pi}{2})-3cos(x+\frac{\pi}{2})=1+sinx[/tex]
[tex]cos2x+2sinx-1=0[/tex]
[tex]1-2sin^2x+sinx-1=0[/tex]
[tex]sinx(1-2sinx)=0[/tex]
[TEX]\left[\begin{sinx=0}\\{sinx= \frac{1}{2}} [/TEX]
[tex]\left[\begin{x=k\pi}\\{x = \frac{5\pi}{6}+2k\pi}\\{x=\frac{\pi}{6}+k\pi} [/tex]

kết hợp với điều kiện x thuộc [tex](\frac{\pi}{2};3\pi)[/tex]
ta có [tex]x=k\pi,k\in \{1,2,3}[/tex]
[tex]x = \frac{5\pi}{6}+2k\pi ,k\in\{0,1}[/tex]
[tex]x=\frac{\pi}{6}+2k\pi,k=1[/tex]
>>[tex]\left[\begin{x=\pi}\\{x = 2\pi}\\{x=3\pi}\\{x=\frac{13\pi}{6}}\\{x=\frac{5 \pi}{6}} \\{x=\frac{17\pi}{6}} [/tex]
 
Last edited by a moderator:
D

doremon.

[tex]cos^4x-sin^4x=(x^2-2kx+2k^2+1)(|cosx|+|sinx|)[/tex](*)
ta có [tex]x^2-2kx+2k^2+1=[(x-k)^2+k^2+1]> 0[/tex]
>>[tex]cos^4x-sin^4x\leq cos^4x\leq\|cosx|\leq[(x-k)^2+1+k^2]|cosx|\leq[(x-k)^2+1+k^2](|cosx|+|sinx|)[/tex]
từ (*)<>[TEX]\left{\begin{sinx=0}\\{cos^4x=[(x-k)^2+k^2+1]|cosx|[/tex]
>>[TEX]\left[\begin{cosx=1}\\{cosx=-1} [/TEX]

TH1 [tex] cosx=1[/tex]
>>[tex](x-k)^2+k^2=0[/tex]
<>[TEX]\left{\begin{k=0}\\{x-k=0} [/TEX]
<>[TEX]\left{\begin{k=0}\\{x=0} [/TEX]

TH2 [tex]cosx=-1[/tex]
>>[tex](x-k)^2+k^2+2=0[/tex] phương trình vô nghiệm

vậy phương trình có nghiệm là [TEX]\left{\begin{x=0}\\{k=0} [/TEX]
 
Last edited by a moderator:
Top Bottom