Bài 1: Tính giá trị của biểu thức:
$A = \sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}$
Bài 2: Chứng minh:
a) $(\sqrt{6}+\sqrt{2})(\sqrt{3}-\sqrt{2})\sqrt{\sqrt{3}+2}=2$
b) $\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}=\sqrt{2}$
Bài 3: Tìm số hữu tỉ $x$ để $A=\frac{\sqrt{x}+6}{\sqrt{x}+1}$ nhận giá trị nguyên.
Giải hộ mình đi ạ, đa tạ. *bắn tim*
1.
$A = \sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4-2\sqrt{3}}
\\=\sqrt{3+2+1+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3-2\sqrt{3}+1}
\\=\sqrt{(\sqrt{3}+\sqrt{2}+1)^2}-\sqrt{(\sqrt{3}-1)^2}
\\=\sqrt{3}+\sqrt{2}+1-\sqrt{3}+1
\\=2+\sqrt{2}$
2.
a) $(\sqrt{6}+\sqrt{2})(\sqrt{3}-\sqrt{2})\sqrt{\sqrt{3}+2}$
$=(\sqrt{3}+1)(\sqrt{3}-\sqrt{2})\sqrt{4+2\sqrt{3}}$
$=(\sqrt{3}+1)(\sqrt{3}-\sqrt{2})\sqrt{(\sqrt{3}+1)^2}$
$=(\sqrt{3}+1)^2(\sqrt{3}-\sqrt{2})$
$=(4+2\sqrt{3})(\sqrt{3}-\sqrt{2})$
$=6+4\sqrt{3}-4\sqrt{2}-2\sqrt{6}\ne 2$
=> Đề sai.
b) $\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}$
$=\dfrac{4\sqrt{2}+\sqrt{14}}{6+\sqrt{8+2\sqrt{7}}}+\dfrac{4\sqrt{2}-\sqrt{14}}{6-\sqrt{8-2\sqrt{7}}}$
$=\dfrac{4\sqrt{2}+\sqrt{14}}{6+\sqrt{(\sqrt{7}+1)^2}}+\dfrac{4\sqrt{2}-\sqrt{14}}{6-\sqrt{(\sqrt{7}-1)^2}}$
$=\dfrac{4\sqrt{2}+\sqrt{14}}{7+\sqrt 7}+\dfrac{4\sqrt{2}-\sqrt{14}}{7-\sqrt 7}$
$=\dfrac{28\sqrt 2-4\sqrt{14}+7\sqrt{14}-7\sqrt 2+28\sqrt 2+4\sqrt{14}-7\sqrt{14}-7\sqrt 2}{49-7}$
$=\dfrac{42\sqrt 2}{42}=\sqrt 2$ (đpcm)
3. ĐK: $x\ge 0$
Ta có: $A=\dfrac{\sqrt x+6}{\sqrt x+1}=1+\dfrac 5{\sqrt x+1}\le 6$
Dấu '=' xảy ra khi $x=0$ (TM)
Mà $A>1\Rightarrow A\in \left\{ 2;3;4;5;6 \right\}$
$A=2\Rightarrow \dfrac 5{\sqrt x+1}=1\Rightarrow \sqrt x+1=5\Leftrightarrow x=16$ (TM)
$A=3\Rightarrow \dfrac 5{\sqrt x+1}=2\Rightarrow \sqrt x+1=\dfrac 52\Leftrightarrow x=\dfrac 94$ (TM)
$A=4\Rightarrow \dfrac 5{\sqrt x+1}=3\Rightarrow \sqrt x+1=\dfrac 53\Leftrightarrow x=\dfrac 49$ (TM)
$A=5\Rightarrow \dfrac 5{\sqrt x+1}=4\Rightarrow \sqrt x+1=\dfrac 54\Leftrightarrow x=\dfrac1{16}$ (TM)
$A=6\Leftrightarrow x=0$
Vậy...