Câu 1:
Ta có:
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} =0$
$\iff \dfrac{ab+bc+ca}{abc}=0$
$\iff ab+bc+ca=0$
Tiếp tục khai thác giả thuyết:
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} =0$
$\iff (\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})^3=0$
$\iff \dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+3( \dfrac{1}{a}+\dfrac{1}{b})(\dfrac{1}{b}+\dfrac{1}{c})(\dfrac{1}{c}+\dfrac{1}{a})=0$
$\iff \dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+3. \dfrac{-1}{c}.\dfrac{-1}{a}.\dfrac{-1}{b}=0$
$\iff \dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}= \dfrac{3}{abc}$
Ta có:
$M=\dfrac{b+c}{a} + \dfrac{c+a}{b} + \dfrac{a+b}{c}$
$\iff M=\dfrac{ab+ac}{a^2}+\dfrac{bc+ab}{b^2}+\dfrac{ac+bc}{c^2}$
$\iff M=\dfrac{-bc}{a^2}+\dfrac{-ac}{b^2}+\dfrac{-ab}{c^2}$ (do $ab+bc+ca=0$)
$\iff M=\dfrac{-abc}{a^3}+\dfrac{-abc}{b^3}+\dfrac{-abc}{c^3}$
$\iff M=-abc(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3})$
$\iff M=-abc.\dfrac{3}{abc}$
$\iff M=-3$
Xong =))