Toán Đại 8

T

thong7enghiaha

Last edited by a moderator:
H

harrypham

[TEX]\frac 1x + \frac 1y + \frac 1z = \frac{1}{x+y+z}[/TEX]
[TEX]\Leftrightarrow \frac{xy+yz+zx}{xyz}= \frac{1}{x+y+z}[/TEX]
[TEX]\Leftrightarrow (xy+yz+zx)(x+y+z)=xyz[/TEX]
[TEX]\Leftrightarrow (xy+yz+zx)(x+y)+xyz+yz^3+z^2x-xyz=0[/TEX]
[TEX]\Leftrightarrow (xy+yz+zx)(x+y)+z^2(x+y)=0[/TEX]
[TEX]\Leftrightarrow (xy+yz+zx+z^2)(x+y)=0[/TEX]
[TEX]\Leftrightarrow [y(z+x)+z(x+z)](x+y)=0[/TEX]
[TEX]\Leftrightarrow (y+z)(x+z)(x+y)=0[/TEX]
[TEX]\Leftrightarrow \left[ \begin{array}{l} y=-z \\ x=-z \\ x=-y \end{aray} \right.[/TEX]
Như vậy ta sẽ luôn có:
[TEX]\frac{1}{x^{2011}}+ \frac{1}{y^{2011}}+ \frac{1}{z^{2011}}= \frac{1}{x^{2011}+y^{2011}+z^{2011}}[/TEX]​
 
Top Bottom