toán đại 8

N

nhokpooh98yb

a

Ta có $x+y+z=1$
$\Longleftrightarrow x^2+y^2+z^2 \ge 1$
Hay $x^2+y^2+z^2 \ge \frac{1}{3}$
 
Last edited by a moderator:
I

ilovescience

Bài đó giải thế này đúng hơn.
Do x+y+z=1
\Rightarrow [TEX](x+y+z)^2=1\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=1[/TEX]
Ta có[TEX]2x^2+2y^2+2z^2 - 2xy - 2yz - 2xz[/TEX]
= [TEX]x^2 - 2xy +y^2 + x^2-2xz+z^2 + y^2-2yz+z^2[/TEX]
=[TEX](x-y)^2+(y-z)^2+(x-z)^2\geq 0[/TEX]
\Rightarrow[TEX]2(x^2+y^2+z^2)\geq 2(xy+yz+xz)[/TEX]
\Rightarrow [TEX]x^2+y^2+z^2+2(xy+yz+xz)\leq 3(x^2+y^2+z^2)[/TEX]
\Rightarrow[TEX]1\leq3(x^2+y^2+z^2)[/TEX]
\Rightarrow[TEX]X^2+y^2+z^2\geq\frac{1}{3}[/TEX]
 
Top Bottom