Có
[tex](\sqrt{a}+\sqrt{c})^2=a+c+2\sqrt{ac}=2b+2\sqrt{ac}[/tex] (1)
Mặt khác
[tex]\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{c}+\sqrt{b}}\\=\frac{2\sqrt{b}+\sqrt{a}+\sqrt{c}}{(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{b})}\\=\frac{(2\sqrt{b}+\sqrt{a}+\sqrt{c})(\sqrt{a}+\sqrt{c})}{(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{b})(\sqrt{a}+\sqrt{c})}\\=\frac{2\sqrt{ab}+2\sqrt{bc}+(\sqrt{a}+\sqrt{c})^2}{(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca})(\sqrt{a}+\sqrt{c})}(2)[/tex]
Thay (1) vô (2) ta cờ o co sắc có:
[tex]\frac{2\sqrt{ab}+2\sqrt{bc}+(\sqrt{a}+\sqrt{c})^2}{(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca})(\sqrt{a}+\sqrt{c})}\\=\frac{2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}+2b}{(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca})(\sqrt{a}+\sqrt{c})}\\=\frac{2(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca})}{(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca})(\sqrt{a}+\sqrt{c})}\\=\frac{2}{\sqrt{a}+\sqrt{c}}(dpcm)[/tex]