toán chứng minh nè

H

harrypham

CMR
a, (x.y)² = x². y²
b, (x/y)² = x² / y²
\\:D/\\:D/\\:D/\\:D/\\:D/\\:D/\\:D/\\:D/
a) [TEX](x.y)^2=(x.y).(x.y)=x^2.y^2[/TEX]
b) [TEX](\frac{x}{y})^2= \frac{x}{y}. \frac{x}{y}= \frac{x^2}{y^2[/TEX].

Chứng minh cho TH tổng quát tương tự.

a) [TEX](x.y)^n=x^n.y^n[/TEX]
b) [TEX](\frac{x}{y})^n= \frac{x^n}{y^n}[/TEX]
 
C

congchualabai

1>(x.y)^2=(x.y).(x.y)=x.y.x.y=(x.x).(y.y)=(x)^2.(y)^2
2>(x/y)^2=x/y.x/y=x.x/y.y=(x)^2/(y)^2
 
Top Bottom