toan chung minh 9

E

eye_smile

Ta có:
$\sqrt{2{x^2}+xy+2{y^2}}+\sqrt{2{y^2}+yz+2{z^2}}+ \sqrt{2{z^2}+zx+2{x^2}}$
$=\sqrt{{[\sqrt{2}(x+\dfrac{1}{4}y)]^2}+{(\sqrt{\dfrac{15}{8}}y)^2}}+\sqrt{{[\sqrt{2}(y+\dfrac{1}{4}z)]^2}+{(\sqrt{\dfrac{15}{8}}z)^2}}+\sqrt{{[\sqrt{2}(z+\dfrac{1}{4}x)]^2}+{(\sqrt{\dfrac{15}{8}}x)^2}}$
\geq $\sqrt{{[\sqrt{2}.\dfrac{5(x+y+z)}{4}]^2}+{[\sqrt{\dfrac{15}{8}}(x+y+z)]^2}}=\sqrt{5}$
Dấu"=" xảy ra \Leftrightarrow $x=y=z=\dfrac{1}{3}$
 
Last edited by a moderator:
Top Bottom