toán bbất đẳng thức

S

sagacious

Last edited by a moderator:
E

eye_smile

2,GT \Leftrightarrow $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{3}{abc}$


Đặt $\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z$

\Rightarrow GT \Leftrightarrow $x+y+z=3xyz$

BĐT \Leftrightarrow $\dfrac{\dfrac{1}{x}}{2.(\dfrac{1}{x})^2+\dfrac{1}{yz}}+\dfrac{\dfrac{1}{y}}{2.(\dfrac{1}{y})^2+ \dfrac{1}{xz}}+\dfrac{\dfrac{1}{z}}{2(\dfrac{1}{z})^2+\dfrac{1}{xy}} \ge \dfrac{1}{xyz}$

\Leftrightarrow $\dfrac{xyz}{x^2+2yz}+\dfrac{xyz}{y^2+2xy}+\dfrac{xyz}{z^2+2xy} \ge \dfrac{1}{xyz}$

\Leftrightarrow $x^2y^2z^2.(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xy}+\dfrac{1}{z^2+2xy}) \ge 1$

Lại có: $\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xy}+\dfrac{1}{z^2+2xy} \ge \dfrac{9}{(x+y+z)^2}=\dfrac{9}{9x^2y^2z^2}=\dfrac{1}{x^2y^2z^2}$

\Rightarrow $x^2y^2z^2.(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xy}+\dfrac{1}{z^2+2xy}) \ge x^2y^2z^2.\dfrac{1}{x^2y^2z^2}=1$

\Rightarrow đpcm
 
Top Bottom