Toán.Bất đẳng thức

N

nguyenbahiep1

Chứng minh: 1/1^2+1/2^2+1/3^2+...+1/n^2<2 zs mọi n thuộc N*

[laTEX]\frac{1}{2^2} < \frac{1}{1.2} =1 - \frac{1}{2} \\ \\ \frac{1}{3^2} < \frac{1}{2.3} = \frac{1}{2} - \frac{1}{3} \\ \\ ............................. \\ \\ \frac{1}{n^2} < \frac{1}{(n-1).n}= \frac{1}{n-1}-\frac{1}{n} \\ \\ \Rightarrow \frac{1}{1^2}+ \frac{1}{2^2} +\frac{1}{3^2}+...+ \frac{1}{n^2} < \frac{1}{1^2} + 1 - \frac{1}{n} = 2 - \frac{1}{n} < 2 \Rightarrow dpcm[/laTEX]
 
T

thaoteen21

toán

áp dug CT:1/a^2<1/(a-1)-1/a
1/1^2=1
1/2^2<1-1/2
1/3^2<1/2-1/3
...1/n^2<1/(n-1)-1/n
côg theo vế:
1/1^2+1/2^2+1/3^2+..+1/n^2<2-1/n<2 (đpcm)
 
Top Bottom