Toán bất đẳng thức!

S

shinkengold

có: [TEX] a^2+1 \geq2a [/TEX]
[TEX]\Rightarrow \frac{a}{a^2+2b+3} \leq \frac{a}{2(a+b+1)}[/TEX]
tương tự
[TEX] \frac{b}{b^2+2c+3} \leq \frac{b}{2(b+c+1)}[/TEX]
[TEX] \frac{c}{c^2+2a+3} \leq \frac{c}{2(c+a+1)}[/TEX]
[TEX]\Rightarrow \frac{a}{a^2+2b+3}+ \frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3} \leq \frac{a}{2(a+b+1)}+\frac{b}{2(b+c+1)}+\frac{c}{2(c+a+1)}[/TEX]
do [TEX] a^2+b^2+c^2=3 \Rightarrow abc \leq 1 \Rightarrow \frac{a}{2(a+b+1)}+\frac{b}{2(b+c+1)}+\frac{c}{2(c+a+1)}\leq \frac{1}{2} [/TEX]
 
Last edited by a moderator:
Top Bottom