[ toán] bất đẳng thức - bài khó

V

vuquynhthuhatinh

Last edited by a moderator:
P

pinkylun

Giải:

Ta có:

$\dfrac{a^2}{b+c}+\dfrac{b+c}{4}=\dfrac{4a^2+(b+c)^2}{4(b+c)} \ge \dfrac{4a(b+c)}{4(b+c)}=a$ (bđt Cauchy)

Tương tự :

$\dfrac{b^2}{a+c}+\dfrac{a+c}{4} \ge b$

$\dfrac{c^2}{a+b}+\dfrac{a+c}{4} \ge c$

Công từng vế bđt:

$=>\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{a+c}+\dfrac{a+c}{4} +\dfrac{c^2}{a+b}+\dfrac{a+c}{4} \ge a+b+c$

$=>\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{a+c}{4} +\dfrac{b+c}{4}+\dfrac{a+b}{4} \ge a+b+c$

$=>\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b} +\dfrac{1}{2}(a+b+c) \ge a+b+c$

$=>\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b} \ge \dfrac{a+b+c}{2}$
 
Last edited by a moderator:
V

vanmanh2001

Áp dụng hệ quả Bu - Nhi - a - cốp - xki
$\dfrac{a^2}{x_1} + \dfrac{b^2}{x_2} + \dfrac{x^2}{x_3} \geq \dfrac{(a+b+c)^2}{x_1 + x_2 + x_3}$
Ta có
$A \geq \dfrac{(a+b+c)^2}{2a+2b+2c} = \dfrac{a+b+c}{2}$
 
T

transformers123

Áp dụng bđt Schwarz, ta có:

$\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b} \ge \dfrac{(a+b+c)^2}{a+b+b+c+c+a} = \dfrac{a+b+c}{2}$

Dấu "=" xảy ra khi $a=b=c$
 
H

hien_vuthithanh

Cách 1 : AD Cauchy :

$\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b} \ge \dfrac{(a+b+c)^2}{2(a+b+c)}=\dfrac{a+b+c}{2}$


Cách 2 : AD Cosi :

$\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge 2\sqrt{\dfrac{a^2(b+c)}{4(b+c)}}=a$

TT $ \rightarrow \dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b} \ge a+b+c-\dfrac{b+c}{4}-\dfrac{c+a}{4}-\dfrac{a+b}{4} =\dfrac{a+b+c}{2}$


pinkylun : Cosi thế này ngắn hơn em à =))
 
Top Bottom