a, Xét [tex]\Delta =(1-m)^{2}-(m-3)=m^{2}-3m+4=(m-\frac{3}{2})^{2}+\frac{7}{4}>0[/tex] => đpcm
b, Theo hệ thức Viète có:
[tex]\left\{\begin{matrix} x_{1}+x_{2}=2(m-1)\\ x_{1}x_{2}=m-3 \end{matrix}\right. \Rightarrow x_{1}+x_{2}-2x_{1}x_{2}=4[/tex]
c, [tex]P=x_{1}^{2}+x_{2}^{2}=(x_{1}+x_{2})^{2}-2x_{1}x_{2}=4(m-1)^{2}-2(m-3)=4m^{2}-10m+10=(2m-\frac{5}{2})^{2}+\frac{15}{4}\geq \frac{15}{4}[/tex]
Dấu "=" xảy ra <=> [tex]m=\frac{5}{4}[/tex]