1) Cho a,b,c là các số dương. CMR: [tex]\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}[/tex]
2) Tìm GTNN của: [tex]A=\sqrt{x-2\sqrt{x-1}} + \sqrt{x + 2\sqrt{x-1}}[/tex]
Bài 1:
Áp dụng bđt Cô - si ta có :
$\dfrac{1}{a} + \dfrac{1}{b} \geq \dfrac{2}{\sqrt{ab}}\\
\dfrac{1}{b} + \dfrac{1}{c} \geq \dfrac{2}{\sqrt{bc}}\\
\dfrac{1}{c} + \dfrac{1}{a} \geq \dfrac{2}{\sqrt{ca}}$
Cộng từng vế :
$2(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} )\geq \dfrac{2}{\sqrt{ab}}+\dfrac{2}{\sqrt{bc}}+\dfrac{2}{\sqrt{ca}}\\
\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\geq \dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}$
Bài 2 :
$A=\sqrt{x-2\sqrt{x-1}} + \sqrt{x + 2\sqrt{x-1}}\\
A = |\sqrt{x-1} - 1| + |\sqrt{x-1} + 1|\\
A = | 1 - \sqrt{x-1}| + |\sqrt{x-1} + 1| \geq |1 - \sqrt{x-1}+\sqrt{x-1} + 1| = 2$
Dấu ''='' xảy ra khi $(1 - \sqrt{x-1})(|\sqrt{x-1} + 1) \geq 0 \Leftrightarrow ...$