Ta có : pt $\iff \left\{\begin{matrix} (x+\sqrt{x^2+2011})(x-\sqrt{x^2+2011})(y+\sqrt{y^2+2011})=2011(x-\sqrt{x^2+2011}) & \\ (x+\sqrt{x^2+2011})(y+\sqrt{y^2+2011})(y-\sqrt{y^2-2011})=2011(y-\sqrt{y^2-2011}) & \end{matrix}\right.$
$\iff \left\{\begin{matrix} -2011(y+\sqrt{y^2+2011})=2011(x-\sqrt{x^2+2011}) & \\ -2011(x+\sqrt{x^2+2011})=2011(y-\sqrt{y^2-2011}) & \end{matrix}\right.$
$\iff \left\{\begin{matrix} -(y+\sqrt{y^2+2011})=(x-\sqrt{x^2+2011}) & \\ -(x+\sqrt{x^2+2011})=(y-\sqrt{y^2-2011}) & \end{matrix}\right.$
Cộng 2 phương trình trên ta đc $2(x+y)=0\iff x+y=0$