{toán 9}

T

thanhcong1594

A. $\sqrt[]{9 - 2\sqrt[]{4}}$
= $\sqrt[]{9 - 4}$
= $\sqrt[]{5}$
b . tham khảo tại đây
 
Last edited by a moderator:
P

phamhuy20011801

$a, \sqrt{9-2\sqrt{4}}=\sqrt{9-2.2}=\sqrt{5}\\
b, \sqrt{2}.B=\sqrt{8-2.\sqrt{7}}-\sqrt{8+2.\sqrt{7}}=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}=\sqrt{7}-1-\sqrt{7}-1=-2\\
\rightarrow B=-\sqrt{2}\\
c, \dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}} - \sqrt{5 + 2\sqrt{6}}}{\sqrt{2} + \sqrt{6 + 2\sqrt{5}} - \sqrt{7-2\sqrt{10}}}\\
=\dfrac{\sqrt{3}+\sqrt{(9+\sqrt{2})^2} - \sqrt{(\sqrt{3}+\sqrt{2})^2}}{\sqrt{2} + \sqrt{(\sqrt{5}+1)^2} - \sqrt{(\sqrt{2}-\sqrt{5})^2}}\\
=\dfrac{\sqrt{3}+\sqrt{9}+\sqrt{2}-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}+\sqrt{2}}\\
=\dfrac{3}{1+2\sqrt{2}}$
 
Last edited by a moderator:
T

tinaphan

c/

$\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7-2\sqrt{10}}}$

$= \dfrac{\sqrt{3}+(3+\sqrt{2})-(\sqrt{2}+\sqrt{3})}{\sqrt{2}+(\sqrt{5}+1)-(\sqrt{5}-\sqrt{2})}$

$=\dfrac{3}{1+2\sqrt{2}}$
 
Last edited by a moderator:
Top Bottom