[Toán 9]

C

cuong131hv

Last edited by a moderator:
L

lp_qt

$\left\{\begin{matrix}xy+x+y=3& \\ \dfrac{1}{x(x+1)}+\dfrac{1}{y(y+1)}=\dfrac{2}{3}& \end{matrix}\right.$

\Leftrightarrow $\left\{\begin{matrix}(x+1)(y+1)=4 & \\ xy+(x+y)=3& \\ \dfrac{x(x+1)+y(y+1)}{xy.(x+1).(y+1)}= \dfrac{2}{3}& \end{matrix}\right.$

\Leftrightarrow $\left\{\begin{matrix}xy+(x+y)=3 & \\ 3.[(x+y)^2+(x+y)-2xy]=8xy & \end{matrix}\right.$

$\left\{\begin{matrix}u=xy & \\ v=x+y & \end{matrix}\right.$

\Rightarrow $\left\{\begin{matrix}u+v=3 & \\ 3.v^2+3v-14u=0 & \end{matrix}\right.$

\Leftrightarrow $\left\{\begin{matrix}u=xy=... & \\ v=x+y=... & \end{matrix}\right.$
 
K

khai221050

2
Với x.y =0 thì đpcm
còn xy khác 0 thì ta có
$x^3-y^3=2xy$ \Leftrightarrow $\dfrac{x^2}{y}-\dfrac{y^2}{x}=2$
\Leftrightarrow $\dfrac{x^4}{y^2}+\dfrac{y^4}{x^2}-2xy=4$
\Leftrightarrow $\dfrac{x^4}{y^2}+\dfrac{y^4}{x^2}+2xy=4+4xy$
\Leftrightarrow $1+xy=(\dfrac{\dfrac{x^2}{y}+\dfrac{y^2}{x}}{2})^2$
vì x,y hữu tỉ nên ...đpcm
 
Last edited by a moderator:
Top Bottom