[Toán 9]

V

vuonghongtham07

Last edited by a moderator:
B

baochauhn1999

Câu 1:
$(4x-1)\sqrt{x^2+1}=2x^2+2x+1$
ĐKXĐ: $x\in R$
Đặt: $4x-1=a;$ $\sqrt{x^2+1}=b$>$0$ ta có:
$ab=2b^2+\frac{a}{2}-\frac{1}{2}$
$<=>2ab=4b^2+a-1$
$<=>0=(a-2ab)+(4b^2-1)$
$<=>0=a(1-2b)+(2b-1)(2b+1)$
$<=>0=(2b-1)(2b+1-a)$
Xét: $2b-1=0$
$<=>2b=1$
$<=>2\sqrt{x^2+1}=1$
$<=>4(x^2+1)=1$
$<=>x^2+1=\frac{1}{4}$
$<=>x^2=\frac{-3}{4}$<$0$ loại
Xét: $2b+1-a=0$
$<=>2\sqrt{x^2+1}+1-4x+1=0$
$<=>2\sqrt{x^2+1}=4x-2$
$<=>\sqrt{x^2+1}=2x-1$
$<=>x^2+1=4x^2-4x+1$
$<=>0=3x^2-4x$
$<=>0=x(3x-4)$
$<=>x=0;\frac{4}{3}$
 
Top Bottom