[Toán 9] Toán lớp 9 nâng cao ?

G

gatretrau

Last edited by a moderator:
N

nguyenbahiep1

bài này cần điều kiện

a,b,c > 0


[laTEX]\frac{a}{b} + 1 \geq 2 \sqrt{\frac{a}{b}} \\ \\ \frac{b}{c} + 1 \geq 2 \sqrt{\frac{b}{c}} \\ \\ \frac{c}{a} + 1 \geq 2 \sqrt{\frac{c}{a}} \\ \\ \frac{a}{b} + \frac{b}{c}+\frac{c}{a}+3 \geq 2( \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} ) \\ \\ \frac{a}{b} + \frac{b}{c}+\frac{c}{a} \geq 2( \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} ) -3 \\ \\ Mat-khac: 2( \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} ) -3 = \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} + \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} -3 \\ \\ ta-co-theo-co-si-3-so : \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} \geq 3 \\ \\ \Rightarrow \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} -3\geq 0 \\ \\ \Rightarrow \frac{a}{b} + \frac{b}{c}+\frac{c}{a} \geq \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{c}} + \sqrt{\frac{c}{a}} \Rightarrow dpcm[/laTEX]
 
Top Bottom