[tex]A = \left( {\frac{{3 + \sqrt x }}{{x + \sqrt x + 1}} - \frac{{\sqrt x - 3}}{{x\sqrt x - 1}}} \right).\frac{{{x^2} + x\sqrt x - \sqrt x - 1}}{{\sqrt x }}[/tex]
[tex] = \left( {\frac{{3 + \sqrt x }}{{x + \sqrt x + 1}} - \frac{{\sqrt x - 3}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}} \right).\frac{{\left( {x - 1} \right)\left( {x + 1} \right) + \sqrt x \left( {x - 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \left( {\frac{{\left( {3 + \sqrt x } \right).\left( {\sqrt x - 1} \right) - \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}} \right).\frac{{\left( {x - 1} \right).\left( {x + \sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \frac{{x + \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\frac{{\left( {x - 1} \right).\left( {x + \sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \frac{{\left( {x + \sqrt x } \right).\left( {x - 1} \right)}}{{\sqrt x .\left( {\sqrt x - 1} \right)}}[/tex]
[tex] = \frac{{\left( {x + \sqrt x } \right).\left( {\sqrt x - 1} \right).\left( {\sqrt x + 1} \right)}}{{\sqrt x .\left( {\sqrt x - 1} \right)}}[/tex]
[tex] = \frac{{\left( {x + \sqrt x } \right).\left( {\sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \frac{{x\sqrt x + x + x + \sqrt x }}{{\sqrt x }}[/tex]
[tex] = \frac{{\sqrt x \left( {x + 2\sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = x + 2\sqrt x + 1[/tex]
[tex] = {\left( {\sqrt x + 1} \right)^2}[/tex]