[Toán 9] tính

N

ntt09

N

ntt09

Bài 20 :
[TEX] A = (\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}})^2 .\frac{x^2-1}{2} -\sqrt{1-x^2} [/TEX]

Bài 21:
[TEX] A= (\frac{3+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}) . \frac{ x^2+x\sqrt{x} -\sqrt{x}-1}{\sqrt{x}}[/TEX]

giúp nha thanks nhìu
 
C

c2nghiahoalgbg

lược giải này

Bài 20 :
[TEX] A = (\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}})^2 .\frac{x^2-1}{2} -\sqrt{1-x^2} [/TEX]

Bài 21:
[TEX] A= (\frac{3+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}) . \frac{ x^2+x\sqrt{x} -\sqrt{x}-1}{\sqrt{x}}[/TEX]

giúp nha thanks nhìu

A = ($\frac{1}{\sqrt{x-1}}$+$\frac{1}{\sqrt{x+1}})^2 $.$\frac{x^2-1}{2}$ -$\sqrt{1-x^2}$
A=$\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{x^2-1}$.$\frac{x^2-1}{2}$ -$\sqrt{1-x^2}$
A=$\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}$-$\sqrt{1-x^2}$
A=$\frac{2x+2\sqrt{x^2-1}}{2}$-$\sqrt{1-x^2}$
A=x+$\sqrt{x^2-1}-\sqrt{1-x^2}$(đầu bài sai vì $x^2-1$ và $1-x^2$ là 2 số đối nhau nên phải có 1 số âm )

(*)(*)(*)(*)(*)
 
Last edited by a moderator:
E

eye_smile

[tex]A = \left( {\frac{{3 + \sqrt x }}{{x + \sqrt x + 1}} - \frac{{\sqrt x - 3}}{{x\sqrt x - 1}}} \right).\frac{{{x^2} + x\sqrt x - \sqrt x - 1}}{{\sqrt x }}[/tex]
[tex] = \left( {\frac{{3 + \sqrt x }}{{x + \sqrt x + 1}} - \frac{{\sqrt x - 3}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}} \right).\frac{{\left( {x - 1} \right)\left( {x + 1} \right) + \sqrt x \left( {x - 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \left( {\frac{{\left( {3 + \sqrt x } \right).\left( {\sqrt x - 1} \right) - \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}} \right).\frac{{\left( {x - 1} \right).\left( {x + \sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \frac{{x + \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\frac{{\left( {x - 1} \right).\left( {x + \sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \frac{{\left( {x + \sqrt x } \right).\left( {x - 1} \right)}}{{\sqrt x .\left( {\sqrt x - 1} \right)}}[/tex]
[tex] = \frac{{\left( {x + \sqrt x } \right).\left( {\sqrt x - 1} \right).\left( {\sqrt x + 1} \right)}}{{\sqrt x .\left( {\sqrt x - 1} \right)}}[/tex]
[tex] = \frac{{\left( {x + \sqrt x } \right).\left( {\sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = \frac{{x\sqrt x + x + x + \sqrt x }}{{\sqrt x }}[/tex]
[tex] = \frac{{\sqrt x \left( {x + 2\sqrt x + 1} \right)}}{{\sqrt x }}[/tex]
[tex] = x + 2\sqrt x + 1[/tex]
[tex] = {\left( {\sqrt x + 1} \right)^2}[/tex]:):)
 
Top Bottom