[Toán 9] Tính tổng biểu thức

H

hunghinh2000

Last edited by a moderator:
S

soccan

Chỉ việc chứng minh $\sqrt{1+\dfrac{1}{a^2}+\dfrac{1}{(a+1)^2}}=1+$ $\dfrac{1}{a}- \dfrac{1}{a-1}\ (a>0)$
Ta có $1+\dfrac{1}{a^2}+\dfrac{1}{(a+1)^2}=\dfrac{a^2(a+1)^2+a^2+(a+1)^2}{a^2(a+1)^2}$
$=\dfrac{a^2(a^2+2a+2)+(a+1)^2}{a^2(a+1)^2}\\
=\dfrac{a^4+2a^2(a+1)+(a+1)^2}{a^2(a+1)^2}=\dfrac{(a^2+a+1)^2}{a^2(a+1)^2}\\
\Longrightarrow \sqrt{1+\dfrac{1}{a^2}+\dfrac{1}{(a+1)^2}}=\dfrac{a^2+a+1}{a(a+1)}=1+\dfrac{1}{a(a+1)}=1+\dfrac{1}{a}-\dfrac{1}{a+1}$
áp dụng vào =))
 
Top Bottom