[Toán 9] Tính Q

L

ledinhtoan

Last edited by a moderator:
T

thaiha_98

Giải:
Ta có:
$a^2(b+c) +b^2(a+c) + c^2(a+b) +2abc=0$
\Leftrightarrow $a^2(b+c) + ab^2 + b^2c + ac^2 + bc^2 + 2abc=0$
\Leftrightarrow $a^2(b+c) + a(b^2+2bc+c^2)+bc(b+c)=0$
\Leftrightarrow $a^2(b+c) + a(b+c)^2+ bc(b+c)=0$
\Leftrightarrow $(b+c)(a^2+ab+ac+bc)=0$
\Leftrightarrow $(b+c)(a+b)(a+c)=0$
\Leftrightarrow $b=-c; a=-b; a=-c$
\Leftrightarrow $a=b=-c ; a=-b=-c; b=-a=-c$
Từ đây chắc dễ giải ra rồi.


________________________________________________________________________________________________________________________________________________________________________________________________________________
 
Top Bottom