[Toán 9]­ Tìm Max

K

koumancu

Last edited by a moderator:
V

vipboycodon


2. Ta có: $\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1} = 2$

$\leftrightarrow \dfrac{1}{x+1} = 1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1} = \dfrac{y}{y+1}+\dfrac{z}{z+1} \ge 2\sqrt{\dfrac{yz}{(y+1)(z+1)}}$ (cauchy)

Tương tự ta có: $\dfrac{1}{y+1} \ge 2\sqrt{\dfrac{xz}{(x+1)(z+1)}}$; $\dfrac{1}{z+1} \ge 2\sqrt{\dfrac{xy}{(x+1)(y+1)}}$

Nhân vế với vế đc:

$\dfrac{1}{(x+1)(y+1)(z+1)} \ge \dfrac{8xyz}{(x+1)(y+1)(z+1)}$
<=> $xyz \le \dfrac{1}{8}$
 
E

eye_smile

1,ĐK của bài này :a;b;c chỉ không âm chứ không phải dương.

Cộng theo vế,đc $3(a+b+c)=72-2b \le 72$

\Leftrightarrow $a+b+c \le 24$
 
H

hien_vuthithanh


2. Ta có: $\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1} = 2$

$\leftrightarrow \dfrac{1}{x+1} = 1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1} = \dfrac{y}{y+1}+\dfrac{z}{z+1} \ge 2\sqrt{\dfrac{yz}{(y+1)(z+1)}}$ (cauchy)

Tương tự ta có: $\dfrac{1}{y+1} \ge 2\sqrt{\dfrac{xz}{(x+1)(z+1)}}$; $\dfrac{1}{z+1} \ge 2\sqrt{\dfrac{xy}{(x+1)(y+1)}}$

Nhân vế với vế đc:

$\dfrac{1}{(x+1)(y+1)(z+1)} \ge \dfrac{8xyz}{(x+1)(y+1)(z+1)}$
<=> $xyz \le \dfrac{1}{8}$


Cách khác

$\sum\dfrac{1}{x+1}=2$ \Leftrightarrow $\dfrac{\sum(x+1)(y+1)}{(x+1)(y+1)(z+1)}=2$

\Leftrightarrow $\sum(x+1)(y+1) =2(x+1)(y+1)(z+1)$

\Leftrightarrow $ 1= 2xyz+\sum xy$

Có $ xy+yz+zx \ge 3 \sqrt[3]{x^2y^2z^2}$ (*)

Đặt $\sqrt[3]{xyz}=t$ \Rightarrow (*) \Leftrightarrow $ 1 \ge 2t^3+3t^2$ \Leftrightarrow $(t+1)^2(2t-1) \le 0$ \Leftrightarrow $t \le \dfrac{1}{2}$ \Rightarrow $xyz \le \dfrac{1}{8}$ \Rightarrow ◘
 
Top Bottom