[Toán 9] Tìm GTNN $S = x+y+\frac{1}{x}+\frac{1}{y}$

S

s9_forever_love

S

sofia1997

Bài 1
$x+y+\frac{1}{x}+\frac{1}{y}=(\frac{25x}{4}+\frac{25y}{4}+\frac{1}{x}+\frac{1}{y})-\frac{21}{4}(x+y)$
[TEX]\geq[/TEX] $4\sqrt[4]{\frac{25x}{4}\frac{25y}{4}\frac{1}{x}\frac{1}{y}}$- $\frac{21}{4}(x+y)$
[TEX]\geq[/TEX]10 -$\frac{21}{4}.\frac{4}{5}=\frac{29}{5}$
Dấu băng xảy ra [TEX]\Leftrightarrow[/TEX]$x=y=\frac{2}{5}$
 
Last edited by a moderator:
S

sofia1997

Bài 2
$\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|$
$|\sqrt{x-1}+1|+|1-\sqrt{x-1}|$[TEX]\geq[/TEX]$|\sqrt{x-1}+1+1-\sqrt{x-1}|=2$
Dẩu bằng xảy ra [TEX]\Leftrightarrow[/TEX]$(\sqrt{x-1}+1)(1-\sqrt{x-1})$[TEX]\geq 0[/TEX]
 
Top Bottom