[Toán 9] Tìm GTNN của biểu thức

T

transformers123

$P=\dfrac{4+(9a-2)^2}{(3a+2)^2}$ (ĐKXĐ: $x \ne \dfrac{-2}{3}$)

$\iff P=\dfrac{81a^2-36a+8}{9a^2+12a+4}$

$\iff 17P=\dfrac{1377a^2-612a+136}{9a^2+12a+4}$

$\iff 17P=\dfrac{81a^2+108a+36}{9a^2+12a+4}+\dfrac{1296a^2-720a+100}
{9a^2+12a+4}$

$\iff 17P=9+\dfrac{(36a-10)^2}{9a^2+12a+4} \ge 9$

$\iff P \ge \dfrac{9}{17}$

Dấu "=" xảy ra kih $36a-10=0 \iff a=\dfrac{5}{18}$
 
L

lp_qt

$y=\dfrac{4+(9a-2)^2}{(3a+2)^2}$ (ĐKXĐ: $x \ne \dfrac{-2}{3}$)

$\iff y=\dfrac{81a^2-36a+8}{9a^2+12a+4}$

$\iff 9y.a^{2}+12y.a+4y=81a^2-36a+8$


$\iff (81-9y).a^{2}-2(6y+18)a+8-4y=0$

[TEX] \Delta '[/TEX] = $(6y+18)^{2}-(81-9y)(8-4y) =612y-324$ \geq $0$


$\iff y$ \geq $\dfrac{9}{17}$
 
Last edited by a moderator:
Top Bottom