[Toán 9]tìm GTNN của biểu thức

T

tuyn

[TEX]A= \sqrt{x^{2}}+ \sqrt{x^{2}+2x+1}[/TEX]
[TEX]B= \sqrt{x^{2}+x+1}+ \sqrt{x^{2}-x+1}[/TEX]
[TEX]C= \sqrt{9x^{2}-6x+1}+ \sqrt{9x^{2}-30x+25}[/TEX]
Hướng dẫn: Dùng BĐT sau
[TEX] \sqrt{a^2+b^2}+ \sqrt{c^2+d^2} \geq \sqrt{(a+c)^2+(b+d)^2}[/TEX]
Dấu "=" xảy ra khi: ad=bc
VD: Tìm Min
[TEX]A= \sqrt{x^{2}}+ \sqrt{x^{2}+2x+1}[/TEX]
[TEX]A= \sqrt{x^2}+ \sqrt{(-x-1)^2}=|x|+|-x-1| \geq |x+(-x-1)|=1[/TEX]
\Rightarrow MinA=1 khi x(-x-1) \geq 0 \Leftrightarrow -1 \leq x \leq 0
+)[TEX]B= \sqrt{x^{2}+x+1}+ \sqrt{x^{2}-x+1}[/TEX]
[TEX]B= \sqrt{(x+ \frac{1}{2})^2+ ( \frac{ \sqrt{3}}{2})^2}+ \sqrt{ ( \frac{1}{2}-x)^2+( \frac{ \sqrt{3}}{2})^2} \geq \sqrt{( x+ \frac{1}{2}+ \frac{1}{2}-x)^2+( \frac{ \sqrt{3}}{2}+ \frac{ \sqrt{3}}{2})^2}[/TEX]
[TEX]=2[/TEX]
\Rightarrow MinB=2 khi: [TEX] \frac{ \sqrt{3}}{2}(x+ \frac{1}{2})= \frac{ \sqrt{3}}{2}( \frac{1}{2}-x) \Leftrightarrow x=0[/TEX]
 
Top Bottom