Giải giúp mình với tìm giá trị lớn nhất nhé
[tex]= \frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}+\frac{z-9}{z}[/tex]
Áp dụng BĐT cauchy ta có
[tex]\sqrt{x-1}\leq \frac{x-1+1}{2}=\frac{x}{2}\Rightarrow \frac{\sqrt{x-1}}{x}\leq \frac{1}{2}[/tex]
[tex]\sqrt{y-4}=\frac{1}{2}.\sqrt{(y-4).4}\leq \frac{1}{2}.\frac{y-4+4}{2}=\frac{y}{4}\Rightarrow \frac{\sqrt{y-4}}{y}\leq \frac{1}{4}[/tex]
[tex]\sqrt{z-9}=\frac{1}{3}.\sqrt{(z-9).9}\leq \frac{1}{3}.\frac{z-9+9}{2}= \frac{z}{6}\Rightarrow \frac{\sqrt{z-9}}{z}\leq \frac{1}{6}[/tex]
[tex]\Rightarrow \frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}+\frac{z-9}{z}\leq \frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}[/tex]
Dấu "=" xảy ra [tex]\Leftrightarrow \left\{\begin{matrix} x-1=1\\ y-4=4 \\ z-9=9 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=2\\ y=8 \\ z=19 \end{matrix}\right.[/tex]
Vậy...