(Toán 9) Tìm GTLN

L

lp_qt

[2. Cho a,b,c > 0 t/m $a+b+c=1$. Tìm GTLN của bt:
$P= \sqrt{\dfrac{ab}{c+ab}} +\sqrt{\dfrac{bc}{a+bc}} +\sqrt{\dfrac{ca}{b+ca}}$

$c+ab=c(a+b+c)+ab=(a+c)(b+c)$

$\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{(a+c)(b+c)}}
=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}} \le \dfrac{\dfrac{b}{b+c}+\dfrac{a}{a+c}}{2}$

\Rightarrow $P \le \dfrac{\dfrac{b}{b+c}+\dfrac{a}{a+c}}{2}+\dfrac{ \dfrac{c}{a+c}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{b+a}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}$
 
E

eye_smile

1.Đặt $y=|2x-1|$

$A=-(y^2-3y+3)=-\dfrac{-3}{4}-(y-\dfrac{3}{2})^2 \le \dfrac{-3}{4}$

Dấu = xảy ra \Leftrightarrow $y=\dfrac{3}{2}$

\Leftrightarrow $|2x-1|=\dfrac{3}{2}$

\Rightarrow $x=-0,25$
 
Last edited by a moderator:
Top Bottom