$\dfrac{yz\sqrt{x - 1} + xz\sqrt{y - 2} + yx\sqrt{z - 3}}{xyz}$
$= \dfrac{\sqrt{x - 1}}{x} + \dfrac{\sqrt{y - 2}}{y} + \dfrac{\sqrt{z - 3}}{z}$
Ta có: $\sqrt{x - 1} = \sqrt{1(x - 1)} \le \dfrac{1 + x - 1}{2} = \dfrac{x}{2}$
$\sqrt{y - 2} = \dfrac{1}{\sqrt{2}}.\sqrt{2(y - 2)} \le \dfrac{1}{\sqrt{2}}.\dfrac{2 + y - 2}{2} = \dfrac{1}{\sqrt{2}}.\dfrac{y}{2}$
$\sqrt{z - 3} = \dfrac{1}{\sqrt{3}}.\sqrt{3(z - 3)} \le \dfrac{1}{\sqrt{3}}.\dfrac{3 + z - 3}{2} = \dfrac{1}{\sqrt{3}}.\dfrac{z}{2}$
Cộng theo vế có :
$A \le \dfrac{1}{2}(1 + \dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{3}})$
$A_{max} = \dfrac{1}{2}(1 + \dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{3}}) \leftrightarrow x = 2; y = 4; z = 6$