Toán [toán 9] thi học sinh giỏi

C

chaudoublelift

giải

$a+b+c+ab+bc+ca=6abc⇒\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=6$
$AM-GM: 3VT=\dfrac{3}{a^2}+\dfrac{3}{b^2}+\dfrac{3}{c^2}=(\dfrac{1}{a^2}+\dfrac{1}{b^2})+( \dfrac{1}{b^2}+\dfrac{1}{c^2})+( \dfrac{1}{c^2}+\dfrac{1}{a^2})+(\dfrac{1}{a^2}+1)+(\dfrac{1}{b^2}+1)+(\dfrac{1}{c^2}+1)-3$
$≥2(\dfrac{1}{bc}+\dfrac{1}{ac}+ \dfrac{1}{ab}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b})-3=9$
Suy ra $VT≥3$(đpcm)
 
Top Bottom