[Toán 9] $(\sqrt{x^2+2010}-x)(\sqrt{y^2+2010}-y)=2010$

N

noinhobinhyen

$(\sqrt[]{x^2+2010}-x)(\sqrt[]{y^2+2010}-y)=2010$

$\Leftrightarrow \sqrt[]{x^2+2010}-x = \dfrac{2010}{\sqrt[]{y^2+2010}-y}=
\sqrt[]{y^2+2010}+y$


$\Leftrightarrow (\sqrt[]{x^2+2010} - \sqrt[]{y^2+2010})-(x+y)=0$

$\Leftrightarrow \dfrac{x^2-y^2}{\sqrt[]{x^2+2010}+\sqrt[]{y^2+2010}}-(x+y)=0$

$\Leftrightarrow (x+y)(x-y-\sqrt[]{x^2+2010}-\sqrt[]{y^2+2010})=0$

$\Leftrightarrow x+y=0$

$x-y-\sqrt[]{x^2+2010}+\sqrt[]{y^2+2010} = 0$ em làm được chứ

Gợi ý : $\sqrt{x^2+2010} > \sqrt{x^2} \geq x => x- \sqrt[]{x^2+2010} < 0$

... tương tự
 
Last edited by a moderator:
Top Bottom