[Toán 9] $\sqrt{2x+3} - \sqrt{4-x} + x^3 - 2x^2 - 2x -5 = 0$

R

rongtuongduong

Last edited by a moderator:
N

nguyenbahiep1

Giải phương trình
\sqrt{2x+3} - \sqrt{4-x} + x^3 - 2x^2 - 2x -5 = 0

[laTEX]\sqrt{2x+3} - 3 + 1 - \sqrt{4-x} + x^3 - 2x^2 - 2x -3 = 0 \\ \\ txd: -\frac{3}{2}\leq x \leq 4 \\ \\ \frac{2(x-3)}{\sqrt{2x+3} + 3} + \frac{x-3}{ 1 + \sqrt{4-x}} + (x-3).(x^2+x+1) = 0 \\ \\ TH_1: x = 3 \\ \\ TH_2: \frac{2}{\sqrt{2x+3} + 3} + \frac{1}{ 1 + \sqrt{4-x}} + (x^2+x+1) = 0 \\ \\ \frac{2}{\sqrt{2x+3} + 3} + \frac{1}{ 1 + \sqrt{4-x}} > 0 \\ \\ x^2+x+1 = (x+\frac{1}{2})^2 + \frac{3}{4} > 0 \\ \\ \Rightarrow phuong-trinh-vo-nghiem[/laTEX]
 
Top Bottom