[Toán 9] So sánh

K

khaiproqn81

$(\sqrt{2003}+\sqrt{2005})^2=2003+2005+2.\sqrt{2003.2005}=4008+2.\sqrt{2003.2005} =4008+\sqrt{(2004-1)(2004+1)}=4008+\sqrt{2004^2-1} < 4008+\sqrt{2004^2}=6012 \\ (2\sqrt{2004})^2=8016 \\ \Longrightarrow \sqrt{2003}+\sqrt{2005}<2\sqrt{2004}$
 
T

transformers123

$(\sqrt{2003}+\sqrt{2005})^2=2003+2005+2.\sqrt{2003.2005}=4008+2.\sqrt{2003.2005} =4008+\sqrt{(2004-1)(2004+1)}=4008+\sqrt{2004^2-1} < 4008+\sqrt{2004^2}=6012 \\ (2\sqrt{2004})^2=8016 \\ \Longrightarrow \sqrt{2003}+\sqrt{2005}<2\sqrt{2004}$
cách khác:
$\sqrt{2003}+\sqrt{2005} \le \sqrt{2(2003+2005)}=\sqrt{4.2004}=2\sqrt{2004}$
mà dấu "=" ko xảy ra nên:
$$\sqrt{2003}+\sqrt{2005} < 2\sqrt{2004}$$


Ngu từ nhỏ cho hỏi có HĐT: $\sqrt{a}+\sqrt{b} \le \sqrt{2ab}$ không nhỉ, c/m em xem ;;)
@transformers123: xem tại đây OK=))
 
Last edited by a moderator:
Top Bottom