[Toán 9]Số học

V

vipbun789

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Mời mọi người tham khảo, nếu có sai sót xin bỏ qua.


PHƯƠNG PHÁP TÌM CHỮ SỐ TẬN CÙNG:

Xét số A = [TEX]a^n[/TEX]

Khi k lấy lần lượt những giá trị tự nhiên khác nhau thì trong biểu diễn thập phân của số

A, chữ số tận cùng hoặc một số chữ số tận cùng của A xuất hiện tuần hoàn. Ta chỉ cần tìm

chu kỳ của hiện tượng này và A ở vào trường hợp nào với giá trị k đã cho.

Chẳng hạn:

* Tìm chữ số tận cùng của : A = 9^9^9

Đặt [TEX]9^9[/TEX](ở phần lũy thừa) là k

Ta có :
[TEX]9^1[/TEX]= 9 tận cùng là 9
[TEX]9^2[/TEX]= 81 tận cùng là 1
[TEX]9^3[/TEX]= 729 tận cùng là 9
[TEX]9^4[/TEX]= 6561 tận cùng là 1

\Rightarrow Chu kỳ hiện tượng lặp lại chữ số tận cùng là 2

Nếu k chẵn (hay k =2m , m thuộc Z) thì A^(2m) tận cùng là 1
Nếu k lẻ (hay k = 2m+1, m thuộc Z) thì A^(2m+1) tận cùng là 9

Lại có :
[TEX]9^8[/TEX] với 8 chẵn nên [TEX]9^8[/TEX] tận cùng là 1
Suy ra số chứa số tận cùng là 1 là số lẻ có dạng 2m+1

\Rightarrow A tận cùng là 9


SỐ NGUYÊN TỐ:

1. Định nghĩa :
+ Số NT là số tự nhiên chỉ có 2 ước số là 1 và chính nó . Vd: 2,3,5,7,11,...
+ Các số từ 3 ước trở lên gọi là hợp số
+ Số 0 và 1 không phải là số nguyên tố và cũng không phải là hợp số
+ Bất kì số tự nhiên nào lớn hơn 1 cũng có ít nhất 1 ước số là số nguyên tố

2. Định lý :
+ Dãy số nguyên tố là vô hạn
+ Nếu số nguyên tố d chia hết cho số nguyên tố e thì d=e
+ Nếu số nguyên tố d không chia hết cho a và b thì d không chia hết cho tích ab
+ Nếu số nguyên tố d chia hết cho tích abc thì d chia hết cho ít nhất 1 thừa số trong tích abc

3. Số nguyên tố cùng nhau :
+ Hai số tự nhiên được gọi là nguyên tố cùng nhau khi và chỉ khi chúng có ước chung duy nhất là 1. a và b nguyên tố cùng nhau , ký hiệu : (a,b) = 1
+ Hai số tự nhiên liên tiếp thì nguyên tố cùng nhau
+ Hai số nguyên tố thì nguyên tố cùng nhau
+ 3 số nguyên tố cùng nhau thì chúng nguyên tố sánh đôi (nt từng đôi một)
(a,b,c) =1 \Rightarrow (a,b) = 1 ; (b,c) = 1 ; (c,a) = 1
Lưu ý: đảo lại không đúng

4. Dạng tổng quát :
Hiện vẫn chưa có dạng tổng quát cùa số nguyên tố



SỐ CHÍNH PHƯƠNG:

+ Số chính phương là bình phương đúng của một số nguyên . VD : 0,1,4,9,16,25,...
+ Số chính phương chỉ có chữ số tận cùng là một trong : 0,1,4,5,6,9
+ Số chính phương chia 4 hết hoặc chia 4 dư 1. Hay số CP chỉ có dạng 4n hoặc 4n+1 với n thuộc N
+ Số chính phương còn có dạng 3n hoặc 3n+1

P/s:Cám ơn, mình vừa biết thêm đc dạng mới là 8n, 8n+1, 8n+4
Các chứ số tận cùng...
 
Last edited by a moderator:
M

minhtuyb

Bổ sung về số chính phương​


I. ĐỊNH NGHĨA:
Số chính phương là số bằng bình phương đúng của một số nguyên.
II. TÍNH CHẤT:
1. Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9 ; không thể có chữ số tận cùng bằng 2, 3, 7, 8.
2. Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn. Điều này cũng có nghĩa là [TEX]x^2\vdots p\Rightarrow x^2\vdots p^2[/TEX] với p là số nguyên tố.Đây là một t/c rất quan trọng trong dạng bài "Giải pt nghiệm nguyên"
3. Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n thuộc N). Tức là: [TEX]x^2\equiv 0,1(mod4)[/TEX]
4. Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n thuộc N).Tức là [TEX]x^2\equiv 0,1(mod3)[/TEX]
5. Số chính phương chỉ có thể có một trong ba dạng 8n; 8n + 1 hoặc 8n+4. Tức là [TEX]x^2\equiv 0,1,4(mod8)[/TEX]
Chú ý:Các t/c 3,4,5 thường được sử dụng để c/m một phương trình nghiệm nguyên vô nghiệm
6. Số chính phương tận cùng bằng 1 hoặc 9 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2
Số chính phương tận cùng bằng 4 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
 
D

dungduck_lemlinh

Tìm chữ số tận cùng là 1 dạng toán rất hay trong chương trình trung học cơ sở.Nói về pp và hướng đi ta thông thường sử dụng :
1.Truy hồi và các tính chất

Tìm chữ số tận cùng của một số tự nhiên là dạng toán hay. Đa số các tài liệu về dạng toán này đều sử dụng khái niệm đồng dư, một khái niệm trừu tượng và không có trong chương trình. Vì thế có không ít học sinh, đặc biệt là các bạn lớp 6 và lớp 7 khó có thể hiểu và tiếp thu được.
Qua bài viết này, tôi xin trình bày với các bạn một số tính chất và phương pháp giải bài toán “tìm chữ số tận cùng”, chỉ sử dụng kiến thức THCS.
Chúng ta xuất phát từ tính chất sau :
Tính chất 1 :a) Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi.
b) Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.
c) Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 1.
d) Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 6.
Việc chứng minh tính chất trên không khó, xin dành cho bạn đọc. Như vậy, muốn tìm chữ số tận cùng của số tự nhiên x = am, trước hết ta xác định chữ số tận cùng của a.
- Nếu chữ số tận cùng của a là 0, 1, 5, 6 thì x cũng có chữ số tận cùng là 0, 1, 5, 6.
- Nếu chữ số tận cùng của a là 3, 7, 9, vì am = a4n + r = a4n.ar với r = 0, 1, 2, 3 nên từ tính chất 1c => chữ số tận cùng của x chính là chữ số tận cùng của ar.
- Nếu chữ số tận cùng của a là 2, 4, 8, cũng như trường hợp trên, từ tính chất 1d => chữ số tận cùng của x chính là chữ số tận cùng của 6.ar.
Bài toán 1 : Tìm chữ số tận cùng của các số :
a) 799 b) 141414 c) 4567
Lời giải :
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
Tính chất sau được => từ tính chất 1.
Tính chất 2 : Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.
Bài toán 2 : Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 + … + 20048009.
Lời giải :
Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004}).
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :
(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
Từ tính chất 1 tiếp tục => tính chất 3.
Tính chất 3 :a) Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7 ; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3.
b) Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8 ; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2.
c) Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9, khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng.
Bài toán 3 : Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 + … + 20048011.
Lời giải :
Nhận xét : Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004}).
Theo tính chất 3 thì 23 có chữ số tận cùng là 8 ; 37 có chữ số tận cùng là 7 ; 411 có chữ số tận cùng là 4 ; …
Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng : (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.
Vậy chữ số tận cùng của tổng T là 9.
* Trong một số bài toán khác, việc tìm chữ số tận cùng dẫn đến lời giải khá độc đáo.
Bài toán 4 : Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Lời giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Sử dụng tính chất “một số chính phương chỉ có thể tận cùng bởi các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9”, ta có thể giải được bài toán sau :
Bài toán 5 : Chứng minh rằng các tổng sau không thể là số chính phương :
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
Sử dụng tính chất “một số nguyên tố lớn hơn 5 chỉ có thể tận cùng bởi các chữ số 1 ; 3 ; 7 ; 9”, ta tiếp tục giải quyết được bài toán :
Bài toán 6 : Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng : p8n +3.p4n - 4 chia hết cho 5.
* Các bạn hãy giải các bài tập sau :
Bài 1 : Tìm số dư của các phép chia :
a) 21 + 35 + 49 + … + 20038005 cho 5
b) 23 + 37 + 411 + … + 20038007 cho 5
Bài 2 : Tìm chữ số tận cùng của X, Y :
X = 22 + 36 + 410 + … + 20048010
Y = 28 + 312 + 416 + … + 20048016
Bài 3 : Chứng minh rằng chữ số tận cùng của hai tổng sau giống nhau :
U = 21 + 35 + 49 + … + 20058013
V = 23 + 37 + 411 + … + 20058015
Bài 4 : Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn :
19x + 5y + 1980z = 1975430 + 2004.
* Các bạn thử nghiên cứu các tính chất và phương pháp tìm nhiều hơn một chữ số tận cùng của một số tự nhiên, chúng ta sẽ tiếp tục trao đổi về vấn đề này.
 
Top Bottom