[Toán 9] Rút gọn $\frac{x\sqrt{x}-y\sqrt{y}}{x+y+\sqrt{xy}}$

K

khaitien

[TEX]x\sqrt{x} = \sqrt{x}^3[/TEX]
[TEX]y\sqrt{y} = \sqrt{y}^3[/TEX]
\Rightarrow [TEX]x\sqrt{x} + y\sqrt{y} [/TEX]= [TEX]\sqrt{x}^3 - \sqrt{y}^3[/TEX] = [TEX](\sqrt{x} - \sqrt{y} ) ( x+y+\sqrt{xy} )[/TEX]
\Rightarrow [TEX]\frac{x\sqrt{x} + y\sqrt{y}}{x+y+\sqrt{xy}} [/TEX]= [TEX]\sqrt{x} - \sqrt{y}[/TEX]
 
K

khanhdx

ta có [TEX]x\sqrt[]{x}[/TEX]-y[TEX]\sqrt[]{y}[/TEX]=[TEX]\sqrt[]{x^3}[/TEX]-[TEX]\sqrt[]{y^3}[/TEX]
[TEX]\Rightarrow[/TEX][TEX]\frac{(\sqrt[]{x}-\sqrt[]{y})(x+y+\sqrt[]{xy}}{x+y+\sqrt[]{xy}}[/TEX]

=[TEX]\frac{(\sqrt[]{x}-\sqrt[]{y})(x+y+\sqrt[]{xy})}{x+y+\sqrt[]{xy}}[/TEX]
=[TEX]\sqrt[]{x}-\sqrt[]{y}[/TEX]
 
Last edited by a moderator:
Top Bottom