[Toán 9] Rút gọn căn thức

I

icy_tears

$\sqrt{6 + \sqrt{24} + \sqrt{12} + \sqrt{8}} - \sqrt{3} = \sqrt{2} + 1$

\Leftrightarrow $\sqrt{6 + \sqrt{24} + \sqrt{12} + \sqrt{8}} = \sqrt{3} + \sqrt{2} + 1$

Xét hiệu: $(6 + \sqrt{24} + \sqrt{12} + \sqrt{8}) - (\sqrt{3} + \sqrt{2} + 1)^2$

$= (6 + 2\sqrt{6} + 2\sqrt{3} + \sqrt{2}) - (3 + 2 + 1 + 2 . \sqrt{3} . \sqrt{2} + 2 . \sqrt{3} . 1 + 2 . \sqrt{2} . 1)$

$= (6 + 2\sqrt{6} + 2\sqrt{3} + \sqrt{2}) - (6 + 2\sqrt{6} + 2\sqrt{3} + \sqrt{2})$

$= 0$
 
Last edited by a moderator:
T

thaiha_98

Làm luôn :D
Giải như sau:

$\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}$

$=\sqrt{2+1+3+2\sqrt{2.3}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3}$

$=\sqrt{(\sqrt{2}+1+\sqrt{3})^2}-\sqrt{3}$

$=\sqrt{2}+1+\sqrt{3}-\sqrt{3}=\sqrt{2}+1$

Vậy...


____________________________________________________________________________________________________
 
Top Bottom