$a)\sqrt{18(\sqrt{2}-\sqrt{3})^2}=\sqrt{18}.\sqrt{(\sqrt{2}-\sqrt{3})^2}\\=3\sqrt{2}|\sqrt{2}-\sqrt{3}|=3\sqrt{2}(\sqrt{3}-\sqrt{2})(Vì \ \sqrt{2}-\sqrt{3}<0)$
$b)ab\sqrt{1+\dfrac{1}{a^2b^2}}=ab\sqrt{\dfrac{a^2b^2+1}{a^2b^2}}=\dfrac{ab\sqrt{a^2b^2+1}}{|ab|}=\left\{\begin{matrix}
\sqrt{a^2b^2+1} \ nếu \ ab> 0\\
-\sqrt{a^2b^2+1} \ nếu \ ab< 0
\end{matrix}\right.$
$c)\sqrt{\dfrac{a}{b^3}+\dfrac{a}{b^4}}=\sqrt{\dfrac{ab+a}{b^4}}=\dfrac{\sqrt{ab+a}}{|b^2|}=\dfrac{1}{b^2}\sqrt{ab+a}$
$d)\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{a}.\sqrt{a}+\sqrt{a}.\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}}=\sqrt{a}(do \ \sqrt{a}+\sqrt{b}\neq 0)$