[Toán 9] $R = \dfrac{{x + 6\sqrt x + 34}}{{\sqrt x }} + 3 $

C

cuhanhtim_1997

\[R = \dfrac{{x + 6\sqrt x + 34}}{{\sqrt x }} + 3 = \sqrt x + 6 + \dfrac{{34}}{{\sqrt x }} + 3 = \sqrt x + \dfrac{{34}}{{\sqrt x }} + 9\]
Áp dụng BĐT giữa TB cộng và TB nhân:
\[\sqrt x + \dfrac{{34}}{{\sqrt x }} \geq 2\sqrt {\sqrt x .\dfrac{{34}}{{\sqrt x }}} \Rightarrow \sqrt x + \dfrac{{34}}{{\sqrt x }} \geq 2\sqrt {34} \]
\[ \Rightarrow {R_{\min }} = 2\sqrt {34} + 9 \Leftrightarrow \sqrt x = \dfrac{{34}}{{\sqrt x }} \Leftrightarrow x = 34\]
 
T

thuvan_98

[TEX]R=\frac{x+6\sqrt[2]x+9+25}{\sqrt[2]x+3}[/TEX]
[TEX] R=\frac{(\sqrt[2]x+3)^2+25}{\sqrt[2]x+3}[/TEX]
R=[TEX]\sqrt[2]x+3[/TEX]+[TEX]\frac{25}{\sqrt[2]x+3}[/TEX]
ap dung BDT Cosy:
[TEX]\sqrt[2]x+3[/TEX]+[TEX]\frac{25}{\sqrt[2]x+3}[/TEX][TEX]\geq[/TEX]10
[TEX]\Rightarrow[/TEX]R[TEX]\geq[/TEX]10[TEX]\Leftrightarrow[/TEX]x=4
thanks+đúng(nếu đúng)
 
Last edited by a moderator:
Top Bottom