[toán 9] phân tích đa thức thành nhân tử

T

tienqm123

=$ ( x^10$ - x) + $(x^5 - x^2) + x^2 + x + 1$
= $x (x^9-1) + x^2(x^3-1) + x^2 + x + 1$
=$ (x^2 + x+ 1). Ax$
 
Last edited by a moderator:
T

transformers123

$x^{10}+x^5+1$

$=(x^{10}-x)+x^5-x^2+x^2+x+1$

$=x(x^9-1)+x^2(x^3-1)+x^2+x+1$

$=x(x^3-1)(x^6+x^3+1)+x^2(x-1)(x^2+x+1)+(x^2+x+1)$

$=(x^7+x^4+x)(x-1)(x^2+x+1)+(x^2+x+1)(x^3-x^2)+(x^2+x+1)$

$=(x^2+x+1)(x^8-x^7+x^5-x^4+x^2-x)+(x^2+x+1)(x^3-x^2)+(x^2+x+1)$

$=(x^2+x+1)(x^8-x^7+x^5-x^4+x^2-x+x^3-x^2+1)$

$=(x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)$
 
N

naruto2001

$x^{10}+x^5+1$
$=(x^{10}+x^9+x^8)-(x^9+x^8+x^7)+(x^7+x^6+x^5)-(x^6+x^5+x^4)+(x^5+x^4+x^3)-(x^3+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1)$
GG
 
Top Bottom