Bài 3:
$\dfrac{1}{\sqrt{a}+\sqrt{a+1}} + \dfrac{1}{\sqrt{a+1}+\sqrt{a+2}}+\dfrac{1}{\sqrt{a+2}+\sqrt{a+3}}$
$=\dfrac{\sqrt{a}-\sqrt{a+1}}{(\sqrt{a}+\sqrt{a+1})(\sqrt{a}-\sqrt{a+1})} + \dfrac{\sqrt{a+1}-\sqrt{a+2}}{(\sqrt{a+1}+\sqrt{a+2})(\sqrt{a+1}-\sqrt{a+2})}+\dfrac{\sqrt{a+2}-\sqrt{a+3}}{(\sqrt{a+2}+\sqrt{a+3})(\sqrt{a+2}-\sqrt{a+3})}$
$=\dfrac{\sqrt{a}-\sqrt{a+1}}{-1} + \dfrac{\sqrt{a+1}-\sqrt{a+2}}{-1}+\dfrac{\sqrt{a+2}-\sqrt{a+3}}{-1}$
$=\sqrt{a+1}-\sqrt{a}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+3}-\sqrt{a+2}$
$=\sqrt{a+3}-\sqrt{a}$
$=\dfrac{\sqrt{a+3}-\sqrt{a}}{1}$
$=\dfrac{3}{\sqrt{a+3}+\sqrt{a}}$