[toán 9] GTNN

H

hien_vuthithanh

Đk x \geq 3

\Rightarrow $ \sqrt{x+22}$ \geq $\sqrt{25}=5$ \forall x \geq 3

\Rightarrow $\sqrt{x-3}$ \geq 0 \forall x \geq 3

\Rightarrow $A$ \geq $5$

\Rightarrow $min=5$ tại $x=3$
 
Last edited by a moderator:
L

lp_qt

ĐKXĐ :$x$ \geq $3$

$A=\sqrt{x+22}+\sqrt{x-3}$ \geq $\sqrt{x+22+x-3}=\sqrt{2x+19}$

$x$ \geq $3 \Longrightarrow \sqrt{2x+19}$ \geq $\sqrt{2.3+19}=5$

$\Longrightarrow A$ \geq $5$

Dáu = xảy ra $\Longleftrightarrow \sqrt{x+22}=0$ hoặc $\sqrt{x-3} =0$

$\Longleftrightarrow x=3$
 
N

nom1

ĐKXĐ :$x$ \geq $3$

$A=\sqrt{x+22}+\sqrt{x-3}$ \geq $\sqrt{x+22+x-3}=\sqrt{2x+19}$

$x$ \geq $3 \Longrightarrow \sqrt{2x+19}$ \geq $\sqrt{2.3+19}=5$

$\Longrightarrow A$ \geq $5$

Dáu = xảy ra $\Longleftrightarrow \sqrt{x+22}=0$ hoặc $\sqrt{x-3} =0$

$\Longleftrightarrow x=3$

cho em hỏi đây là BĐT gi vậy ạ
..............................................
 
L

lp_qt

là BĐT $ \sqrt{A}+\sqrt{B} \ge \sqrt{A+B}$

dấu bằng xảy ra khi $ \begin{bmatrix}A=0 & \\ B=0 & \end{bmatrix}$
 
S

soccan

dk: $x \ge 3$
$A^2=19+2x+2\sqrt{(22+x)(x-3)} \ge 19+2.3=25\\
\longrightarrow A \ge 5$
hoặc cũng có cách khác
$A(\sqrt{22+x}-\sqrt{x-3}) =25$
mà $\sqrt{22+x}-\sqrt{x-3} \le 5$
suy ra $A \ge 5$
 
Last edited by a moderator:
Top Bottom